Originala Aricicle Morphology and Associated Pathologies of Maxillary First Molar Using Cone Beam Computed Tomography

Arbab Zia ur Rehman Khan, Muhammad Sheraz Alam, Muhammad Irshad, Sobia Salam, Yusra Jamil and Sana Naeem

Abstract

Objective: The objective of this study was to evaluate the morphology and associated pathologies of maxillary first molar using Cone beam computed tomography. Study Design: Descriptive cross sectional study. Place and Duration of Study: This study was conducted at the Department of Oral Biology, Rehman college of dentistry, Peshawar from $1^{\text {st }}$ March 2016 till 30 ${ }^{\text {th }}$ April 2020. Materials and Methods: A descriptive cross-sectional study was conducted using 128 Cone beam computed tomography scans at Rehman college of dentistry, Peshawar. The Cone beam computed tomography scans were evaluated for number of root canals, presence of caries, agenesis, anatomic abnormalities and ectopic eruption using 3D reconstruction of the images. Data collected was analysed by SPSS version 20 Results: In this study, 56.25% of the scans showed four root canals while 43.75% had 3 canals. Mesiobuccal canal2 was more common in males (74.13%) compared to females. First molar teeth had a 47.65% prevalence of dental caries. Conclusion: Within the limitations of this study, we conclude that mesiobuccal canal-2 is a common finding in the maxillary first molar with higher prevalence in males compared to females. Due to higher susceptibility of first maxillary molar to dental caries, there is a higher probability of missing the mesiobuccal canal-2 during endodontic treatment. Therefore, careful exploration of pulp chamber should be done to avoid treatment failure.

Key Words: cone beam computed tomography, maxillary first molar, mesiobuccal canal-2, dental caries.
Citation of article: Khan AZR, Alam MS, Irshad M, Salam S, Jamil Y, Naeem S. Morphology and Associated Pathologies of Maxillary First Molar Using Cone Beam Computed Tomography Med Forum 2020;31(9):46-49.

INTRODUCTION

Maxillary first molar is key to the occlusion and erupt at 6-7 years of age ${ }^{1}$. Maxillary first molar is the largest tooth in the maxillary arch, although its occlusogingival dimensions are smaller compared to other molars ${ }^{2}$. Usually maxillary first molar has 5 cusps and three roots. Several pathologies are associated with maxillary first molars including caries, agenesis, anatomical abnormalities and ectopic eruption ${ }^{3}$.

[^0]Maxillary first molar is highly susceptible to dental caries because it is the first permanent tooth to erupt in the oral cavity, it has complex tooth surface morphology and post-eruptive enamel maturation time ${ }^{4}$. Untreated caries can lead to pulpitis which may require endodontic treatment. For successful endodontic treatment, knowledge of the external and internal anatomy of tooth and related structures is very important. Maxillary first molars have considerable variations in root canal morphology and missing the extra canal can lead to endodontic treatment failure ${ }^{5}$. Periapical radiographs at different angulations are the mainstay for assessing the length and number of root canals. However, periapical radiographs are affected by image distortion, magnification and superimposition of adjacent anatomical structures over the root which can result in inaccurate measurements and treatment failure ${ }^{6}$. Cone beam computed tomography (CBCT) was initially used to evaluate hard tissues for surgical procedures and implant planning. CBCT is a useful tool in assessing complex root anatomy, extra canals, curved canals and associated pathologies which can greatly improve treatment outcomes ${ }^{7}$. Intraoral radiography results in radiation exposure typically in the range of
$1-8$ microsieverts ($\mu \mathrm{Sv}$), whereas for CBCT the typical value is $50 \mu \mathrm{~Sv}$ for small and $100 \mu \mathrm{~Sv}$ for large scanning volumes. The higher doses of CBCT have health and ethical concerns but are considered safe for use in oral and maxillofacial region ${ }^{8}$. Maxillary first molars normally have 3 canals i.e. mesiobuccal, distobuccal and palatal but a second mesiobuccal canal (mb-2) has been reported in some studies ${ }^{9}$. There is even evidence of teeth having 4, 5 and even 6 canals in literature ${ }^{10}$.
It is very difficult to accurately assess the internal and external anatomy of teeth with conventional intraoral radiography. CBCT provides undistorted 3-dimensional images of teeth and surrounding tissues which help in clearly visualizing root canal anatomy and relationship with other anatomical structures such as maxillary sinus and root apices. This information is vital for successful endodontic treatment.
The objective of this study was to evaluate the morphology and associated pathologies of maxillary first molar analyzed using CBCT.

MATERIALS AND METHODS

This retrospective descriptive cross-sectional study was conducted at Rehman College of Dentistry, Rehman Medical Institute, Peshawar, from $1^{\text {st }}$ March 2016 till $30^{\text {th }}$ April 2020, after getting approval from the institutional ethical committee. Sample size was calculated using G^{*} Power software version 3.1.9.7. CBCT scans of 128 patients, aged between 21 to 40 years of both genders having maxillary first molars with fully developed apices were included in this study. Teeth showing root canal treatment, resorption, posts or crowns were excluded. The images were taken by "carestream (CS) Germany, model no. 90003D" with 74 kv (male patients), 70 kv (female patients), 10 mA . All CBCT scans consisted of standard resolution of 0.3 mm voxel and 10.8 s . Images were analyzed by using CS Imaging Browser 7.0.20 software. Number of roots, root canals and associated pathologies i.e. caries, ectopic eruption, anatomical abnormalities and agenesis were recorded by analyzing coronal, sagittal and axial images. Prevalence of mb-2 and its relationship with sex was also determined. Results were analyzed using the SPSS (version 20). Chi square was applied for comparison of male and female groups.

RESULTS

128 CBCT scans of maxillary first molars ($n=128$) were analysed. There were 70 women (54.68%) and 58 men (45.32%) in our study having mean age of 28.77 years ranging from 22 years to 41 years (table I).

TableNo.1: Age and Gender distribution

Age	Gender
Range: 22-41 years	Male: $58(45.32 \%)$
Mean (+SD): $28.7(+5.25)$	Female:70 (54.68 \%)

Table No.2: Root canals in Maxillary First Molar

Canals	Maxillary first molar
C shaped canal	0
1	0
2	0
3	$56(43.75 \%)$
4	$72(56.25 \%)$
Total	128

Figure No.1: Maxillary Molars
All maxillary first molars had three roots. Four root canals were most commonly found ($\mathrm{n}=72,56.25 \%$) followed by 3 root canals (table 2, figure 1). The presence of fourth root canal i.e. mb-2 in the mesiobuccal root was more common in males (68.7%, $\mathrm{n}=43$) than in females ($38.63 \%, \mathrm{n}=29$). A statistically significant $(\mathrm{p}=0.02)$ difference was found in prevalence of mb-2 canals in group of male and female patients (table 3).

Table No.3: Presence of mesiobuccal-2 canal according to patients' gender

Mesiobuccal- 2 canal	Male	Female	Total
Present	43 (74.13%)	29 (41.42%)	72
Absent	15 (25.86%)	41 (58.57%)	56
Total	58	70	128

Out of 128 patients, 60 had caries in their first maxillary molars. Only 1 tooth had ectopic eruption and all the maxillary first molars were fully formed. None of the teeth had any anatomical abnormalities (table 4)
Table No.2: Pathologies associated with maxillary first molar

	Caries	Ectopic eruption	Agenesis	Anatomical abnormalities
Present	61 (47.65%)	$1(0.00078 \%)$	$0(0 \%)$	$0(0 \%)$
Absent	67 (52.34%)	$127(99.21 \%)$	128 (100%)	$128(100 \%)$
Total	128	128	128	128

DISCUSSION

Several techniques have been described in the literature for evaluation of maxillary first molars. These include
use of periapical radiographs, Orthpantomograms, tooth sectioning and canal staining ${ }^{11}$. Tooth sectioning and canal staining are excellent methods for evaluation of morphology of maxillary first molars, but they are in vitro techniques.
Advances in technology has made it possible for computerized tomographic scans to be used in the diagnosis and evaluation of head and neck anatomy. CBCT offers significant advantages over conventional radiographs. They produce undistorted 3-dimensional images of dental structures whereas radiographs can only form two-dimensional images. CBCT is an accurate analysis of the 3-dimnesional reconstructed images of dental structures ${ }^{12}$. With every imaging modality there is inherent risk of ionizing radiation damage, but risk should always be weighed against benefit. Radiation produced by CBCT is considered safe in the oral and maxillofacial region and it can greatly improve treatment outcomes.
In the current study CBCT was used to evaluate maxillary first molar. Results demonstrate that all the maxillary first molars had 3 roots. These findings correlate with other studies ${ }^{13}$. For successful endodontic treatment, location, number and length of root canals is vital for the clinician. In the present study most maxillary first molars had four root canals (56.25\%). The second canal was always found in the mesiobuccal root and therefore called mesiobuccal-2. Although this prevalence is consistent with other studies, Betancourt P et al. found it to be 69.82% in their studied population ${ }^{14}$. $\mathrm{Mb}-2$ was more common in males (74.13%) compared to females (41.42%). Alrahabi M et al. also found mb-2 to be more prevalent in males ${ }^{15}$. Treatment of MB-2 canal is vital in the success of endodontic therapy. $\mathrm{Mb}-2$ can often remain undetected which can be a persistent source of infection in the periapical area. Shetty et al. reported the prevalence of the MB-2 canal in 80% of maxillary first molars ${ }^{16}$. Most of maxillary first molars (77.19\%) had an untreated MB-2 canal. Periapical lesions were found in unfilled Mesiobuccal-2 canals in 72.7% of maxillary first molars ${ }^{16}$. Since maxillary first molars are the first permanent teeth to erupt and have complex morphology, they are more susceptible to dental caries ${ }^{17}$. Prevalence of dental caries in our studied population was found to be 47.65%. Different authors have also found similar prevalence in their studies ${ }^{18}$. Agenesis and anatomical abnormalities of maxillary first molars such as 4 roots, change in shape of cusp of carabelli are extensively reported in literature ${ }^{19}$, although, we did not find any tooth with these pathologies. Teeth which erupt in abnormal postion in the arch are termed ectopically erupted teeth. Our study only found one tooth which had ectopically erupted. Keneddy DB et al. have reported $3-4 \%$ of ectopically erupted teeth in their studied population ${ }^{20}$. These
differences in the results could be due to sample size and demographic variations.
Our study was based on data from a single region and therefore careful interpretation of results should be made. Larger multicentered studies should be made in the future focusing on relationship of external morphology of maxillary first molar with the number of root canals.

CONCLUSION

Within the limitations of this study, we conclude that mesiobuccal canal-2 is a common finding in the maxillary first molar with higher prevalence in males compared to females. Due to higher susceptibility of first maxillary molar to dental caries, there is a higher probability of missing the mesiobuccal canal-2 during endodontic treatment. Therefore, careful exploration of pulp chamber should be done to avoid treatment failure.

Author's Contribution:

Concept \& Design of Study:	Arbab Zia ur Rehman Khan Muhammad Sheraz Alam, Muhammad
Drafting:	Irshad
Data Analysis:	Sobia Salam, Yusra Jamil, Sana Naeem
Revisiting Critically:	Arbab Zia ur Rehman Khan, Muhammad
Final Approval of version:	Sheraz Alam Arbab Zia ur Rehman Khan

Conflict of Interest: The study has no conflict of interest to declare by any author.

REFERENCES

1. Pasqualini D, Alovisi M, Cemenasco A, Mancini L, Paolino DS, Bianchi C et al. Micro-computed tomography evaluation of Protaper Next and BioRace shaping outcomes in maxillary first molar curved canals. J Endod 2015;41(10):1706-1710.
2. Kim Y, Lee S-J, Woo J. Morphology of maxillary first and second molars analyzed by cone-beam computed tomography in a Korean population:variations in the number of roots and canals and the incidence of fusion. J Endod 2012;38:1063-1068.
3. Dabbagh B, Sigal MJ, Tompson BD, Titley K, Andrews P. Ectopic eruption of the permanent maxillary first molar: Predictive factors for irreversible outcome. Pediatr Dentist 2017;39(3):215-218.
4. Demirci M, Tuncer S, Yuceokur A. Prevalence of Caries on Individual Tooth Surfaces and its Distribution by Age and Gender in University Clinic Patients. Eur J Dent 2010;4(3)270-279.
5. Akbar I. Radiographic study of the problems and failures of endodontic treatment. Int J Health Sci 2015;9(2):111-118.
6. Cotton TP, Geisler TM, Holden DT, Schwartz SA, Schindler WG. Endodontic applications of conebeam volumetric tomography. J Endod 2007;33:1121-32.
7. Patel S, Brown J, Semper M, Abella F, Mannocci F. European Society of Endodontology position statement: Use of cone beam computed tomography in Endodontics: European Society of Endodontology (ESE) developed by. Int Endodontic J 2019;52(12):1675-1678.
8. Alaei P, Spezi E. Imaging dose from cone beam computed tomography in radiation therapy. Physica Medica 2015;31(7):647-658.
9. Briseño-Marroquín B, Paqué F, Maier K, Willershausen B, Wolf TG. Root canal morphology and configuration of 179 maxillary first molars by means of micro-computed tomography: an ex vivo study. J Endod 2015;41(12):2008-2013.
10. Zafar MS, Javed E. Extraoral radiography: An alternative to intraoral radiography for endodontic (root canal system) length determination. Euro Sci J 2013;9(15):51
11. Ordinola-Zapata R, Bramante CM, Versiani MA, Moldauer BI, Topham G, Gutmann JL et al. Comparative accuracy of the Clearing Technique, CBCT and Micro-CT methods in studying the mesial root canal configuration of mandibular first molars. Int Endod J 2017;50(1):90-96.
12. Machado GL. CBCT imaging-A boon to orthodontics. The Saudi Dental J 2015;27(1):12-21.
13. Martins JN, Marques D, Francisco H, Caramês J. Gender influence on the number of roots and root
canal system configuration in human permanent teeth of a Portuguese subpopulation. Quintessence Int 2018;49(2):103-111.
14. Betancourt P, Navarro P, Muñoz G, Fuentes R. Prevalence and location of the secondary mesiobuccal canal in 1,100 maxillary molars using cone beam computed tomography. BMC Med Imaging 2016;16(1):66-68.
15. Alrahabi M, Zafar MS. Evaluation of root canal morphology of maxillary molars using cone beam computed tomography. Pak J Med Sci 2015;31(2):420-430.
16. Shetty H, Sontakke S, Karjodkar F, Gupta P, Mandwe A, Banga KS. A cone beam computed tomography (CBCT) evaluation of mb-2 canals in endodontically treated permanent maxillary molars. A retrospective study in Indian population. J Clin Exp Dent 2017;9:e51-e55
17. Americano GC, Jacobsen PE, Soviero VM, Haubek D. A systematic review on the association between molar incisor hypomineralization and dental caries. Int J Paediatr Dentistry 2017;27(1):11-21.
18. Farooqi FA, Khabeer A, Moheet IA, Khan SQ, Farooq I. Prevalence of dental caries in primary and permanent teeth and its relation with tooth brushing habits among schoolchildren in Eastern Saudi Arabia. Saudi Med J 2015;36(6):737-742.
19. Sakamuri S, Mallineni SK. An Unusual Mandibular Second Molar Mimicking Maxillary First Molar-A Rare Occurrence. Periodon Prosthodon2018;4(1):1-3.
20. Kennedy DB. Management of an ectopically erupting permanent mandibular molar: a case report. Pediatr Dent 2008;30(1):63-65.

[^0]: ${ }^{1 .}$ Department of Oral Biology, Rehman College of Dentistry, Peshawar.
 ${ }^{1}$. Department of Oral Biology,
 ${ }^{1 .}$ Department of Oral Biology,
 Correspondence: Arbab Zia ur Rehman Khan, Assistant Professor of Oral Biology, Rehman College of Dentistry, Peshawar.
 Contact No: 0334-8292066
 Email: zia.rehman@rmi.edu.pk

 ## Received:

 Accepted:
 Printed:

 ## June, 2020

 August, 2020
 September, 2020

