Editorial

Nutritious Value of Garlic

Mohsin Masud Jan Editor

The use of garlic in China dates back thousands of years. It was consumed by ancient Greek and Roman soldiers, sailors, and rural classes. Garlic (Allium satiuum) is a species in the onion genus, Allium. Garlic was rare in traditional English cuisine and has been a common ingredient in Mediterranean Europe. Garlic was used as an Antiseptic to present gangrene during World War I and World War II³.

The serving size of 1-3 cloves (3-9 grams), garlic provides no significant nutritional value, with the content of all essential nutrients below 10% of the Daily Value (DV) (table).⁴ When expressed per 100 grams, garlic contains several nutrients in rich amounts (20% or more of the DV), including vitamins B6 and C. and the dietary minerals manganese and phosphorus. Per 100 gram serving, garlic is also a moderate source (10-19% DV) of certain B vitamins, including thiamin and pantothenic acid, as well as the dietary minerals calcium, iron, and zinc (table). The composition of raw garlic is 59% water, 33% carbohydrates, 6% protein, 2% dietary fiber, and less than 1% fat.⁴

Table No.1: Garlic, raw: Nutritional value per 100g (3.5 oz)

Energy	623 kJ (149 Kcal)	
Carbohydrates	33.06g	
Sugars	1g	
Dietary fiber	2.1g	
Fat	0.5g	
Protein	6.36g	
Vitamins	Quantity	%Dvt
Thiamine (B1)	9.2mg	17%
Riboflavin(b2)	0.11mg	9%
Niacin (B3)	0.7mg	5%
Pantothenic acid	0.596mg	12%
(B5)		
Vitamin B6	1.2350mg	95%
Folate (B9)	3ug	1%
Choline	23.2mg	5%
Vitamin C	31.2	38%
Minerals	Quantity	%DVt
Calcium	1.81mg	18%
Iron	1.7mg	13%
Magnesium	25mg	7%
Manganese	1.672mg	80%
Phosphorus	153mg	22%
Potassium	401mg	9%
Sodium	17mg	1%
Zinc	1.16mg	12%
Other Constituents	Quantity	
Water	59g	
Selenium	14.2ug	

As of 2015, clinical research to determine the possible effects of consuming garlic on hypertension has found no clear effect. ^{5,6} A 2016 meta-analysis indicated there was no effect of garlic consumption in blood levels of lipoprotein(a), a biomarker of atherosclerosis. ⁷ Because garlic might reduce platelet aggregation, people taking anticoagulant medication are cautioned about consuming garlic. ^{8,9}

A 2016 meta-analysis of case-control and cohort studies found a moderate inverse association between garlic intake and some cancers of the upper digestive tract. Another meta-analysis found decreased rates of stomach cancer associated with garlic intake, but cited confounding factors as limitations for interpreting these studies. Further meta-analyses found similar results on the incidence of stomach cancer by consuming allium vegetables including garlic. A 2014 meta-analysis of observational epidemiological studies found that garlic consumption was associated with a lower risk of stomach cancer in Korean people.

A 2016 meta-analysis found no effect of garlic on colorectal cancer. ¹³ A 2014 meta-analysis found garlic supplements or allium vegetables to have no effect on colorectal cancers. ¹⁴

A 2013 meta-analysis of case-control and cohort studies found limited evidence for an association between higher garlic consumption and reduced risk of prostate cancer, but the studies were suspected as having publication bias. A 2013 meta-analysis of epidemiological studies found garlic intake to be associated with decreased risk of prostate cancer. ¹⁵

A 2014 Cochrane review found insufficient evidence to determine the effects of garlic in preventing or treating the common cold.¹⁶ Other reviews concluded a similar absence of high-quality evidence for garlic having a significant effect on the common cold.¹⁷

The sticky juice within the bulb cloves is used as an adhesive in mending glass and porcelain. An environmentally benign garlic-derived polysulfide product is approved for use in the European Union and the UK as a nematicide and insecticide, including for use for control of cabbage root fly and red mite in poultry.

REFERENCES

- Block, Eric. Garlic and Other Alliums: The Lore and the Science. Royal Society of Chemistry 2010. ISBN 978-0-85404-190-9.
- 2. (http://archive.org/details/forloveofgarlicc0000reno/page/21). Square One Publishers, Inc pp.21-25. (http://archive.org/details/forloveofgarlicc0000reno/page/21).

- 3. Tattelman, Ellen. Health Effects of Garlic. Am Family Physician 2005; 72 (1):103–106.
- 4. Nutrition facts for raw garlic. USDA National Nutrient Database, version SR-21. Conde Nast 2014. Retrieved November 2, 2014.
- Rohner, Andres, Ried, Karin, Sobenin, Igor A. et al. A systematic review and meta-analysis on the effects of garlic preparations on blood pressure in individuals with hypertension. Am J Hypertension 2015;28(3): 414–423.
- 6. Stabler, Sarah N, Tejani, Aaron M, Huynh, Fong. Garlic for the prevention of cardiovascular morbidity and mortality in hypertensive patients. Cochrane Database of Systematic Reviews 2015; 8 (8): CD007653.
- Sahebkar, Amirhossein, Serban, Corina, Ursoniu, Sorin, et al. Effect of garlic on plasma lipoprotein(a) concentrations: A systematic review and meta-analysis of randomized controlled clinical trials. Nutrition 2016;32 (1):33–40.
- 8. Khalid R. Effects of garlic on platelet biochemistry and physiology. Molecular Nutrition & Food Research 2017;51 (11): 1335–44.
- Borrelli, Francesca, Capasso, Raffaele, Izzo, Angelo A. Garlic (Allium sativum L.): Adverse effects and drug interactions in humans. Molecular Nutrition and Food Research 2007;51 (11): 1386–97.
- 10. Guercio, Valentina, Turati, Federica, La Vecchia, Carlo, et al. Allium vegetables and upper aerodigestive tract cancers: a meta-analysis of observational studies. Molecular Nutrition & Food Research 2016;60 (1): 212–222.

- 11. Turati, Federica, Guercio, Valentina, Pelucchi, et al. Colorectal cancer and adenomatous polyps in relation to allium vegetables intake: A meta-analysis of observational studies. Molecular Nutrition & Food Research 2014;58 (9):1907–1914.
- 12. Woo, Dong H, Park, Sohee, Kyungwon, et al. Diet and cancer risk in the Korean population: a meta-analysis. Asian Pacific J Cancer Prevention 2014; 15 (19): 8509–19.
- Chiavarini, Manuela, Minelli, Liliana, Fabiani, Roberto. Garlic consumption and colorectal cancer risk in man: a systematic review and metaanalysis. Public Health Nutrition 2016;19(2):308– 317.
- 14. Zhu, Beibei, Zou Li, Qi Lu, Rong Z, et al. Allium vegetables and garlic supplements do not reduce risk of colorectal cancer, based on meta-analysis of prospective studies. Clin Gastroenterol Hepatol 2014;12(12): 1991–2001.
- 15. Zhou, Xiao-Feng, Ding, Zhen-Shan, et al. Allium Vegetables and Risk of Prostate Cancer: Evidence from 132,192 Subjects. Asian Pacific J Cancer Prevention 2013; 14(7): 4131–4134.
- Lissiman, Elizabeth, Bhasale, Alice L, Cohen, Marc. Garlic for the common cold. Cochrane Database of Systematic Reviews 2014;11 (11): CD006206.
- 17. Michael AG, Arroll, Bruce, Prevention and treatment of the common cold: making sense of the evidence. Canadian Medical Association J 2014;186 (3): 190–9.